
An Extension of Atmospheric Boundary Layer

Solvers to Include the PISO-Simple Algorithm

Adam Lavely Ganesh Vijayakumar James Brasseur

The Pennsylvania State University

May 20, 2014

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 1



Contents

1 Introduction
Research Objectives
Algorithms

2 Actuator Line Method Implementation
PISO
PISO-Simple

3 PISO-Simple Stability and `Optimization'
Testing
Application

4 Conclusions

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 2



Contents

1 Introduction
Research Objectives
Algorithms

2 Actuator Line Method Implementation
PISO
PISO-Simple

3 PISO-Simple Stability and `Optimization'
Testing
Application

4 Conclusions

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 3



Our Research: Cyber Wind Facility

� Development of blade-resolved hybrid URANS-LES of the
NREL 5 MW wind turbine

� Vijayakumar et al.

� Compare to lower order models (BEMT, ALM)

� Using the same inow, algorithms, rotor settings, etc.

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 4



Our Research: Requirements

� Large time-steps
� Courant and `mesh Courant' numbers above 1

� Mesh rotation
� Rotor rotates in cellZone with AMI

� Stability
� Large changes in inow, separation

� Minimal CPU time
� Quick (and accurate) solutions

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 5



Transient Algorithm Overview

� SIMPLE:

� Semi-Implicit Method for Pressure-Linked Equations
� Spalding & Patankar at Imperial College circa 1970
� simpleFoam - steady
� transientSimpleFoam discontinued (but still online)

� PISO:

� Pressure Implicit with Splitting of Operators
� Issa at Imperial College circa 1986
� pisoFoam

� PISO-SIMPLE:

� Combination of PISO and SIMPLE
� Unidenti�ed origins
� pimpleFoam, pimpleDyMFoam

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 6



PISO-Simple Code

From pimpleFoam.C:

while (runTime.run())
{

#include "readTimeControls.H"
...
runTime++;
// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct())
{

#include "pEqn.H"
}
if (pimple.turbCorr())
{

turbulence->correct();
}

}
runTime.write();
...

}

missing
From pEqn.H:

U = rAU*(UEqn() == sources(U))().H();
...
adjustPhi(phi, U, p);
// Non-orthogonal pressure corrector loop

while (pimple.correctNonOrthogonal())
{

// Pressure corrector
fvScalarMatrix pEqn
(

fvm::laplacian(rAU, p) == fvc::div(phi)
);

pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(...);

if (pimple.finalNonOrthogonalIter())
{

phi -= pEqn.flux();
}

}
include "continuityErrs.H"
...
sources.correct(U);

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 7



PISO-Simple Algorithm

� Time Loop

� Outer Loop

� Initial U equation
� Initial p equation
� Pressure Loop

? Non-ortho loop

) Update p

? Update U

� Turbulence model

Number of Loops:
PISO-
Simple

Time input

Outer input

Pressure input

Non-
ortho

input

Input from fvSolution.

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 8



Algorithm Comparison

� Time Loop

� Outer Loop

� Initial U equation

� Initial p equation

� Pressure Loop

? Non-ortho loop

) Update p

? Update U

� Turbulence

model

Number of Loops:
PISO-
Simple

PISO Transient
Simple

Time input input input

Outer input 1 input

Pressure input input 1

Non-
ortho

input input input

Input from fvSolution

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 9



Contents

1 Introduction
Research Objectives
Algorithms

2 Actuator Line Method Implementation
PISO
PISO-Simple

3 PISO-Simple Stability and `Optimization'
Testing
Application

4 Conclusions

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 10



PISO ALM Algorithm

� Time Loop

� � Wind turbine forces
� Initial U equation
� Initial p equation
� Pressure Loop

? Non-ortho loop

) Update p

? Update U

� Turbulence model

� U equation includes
turbine forces

� Blade forces are given
as values rather than
matrix coe�cients

� Relies on previous
(not new) velocity
�eld

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 11



PISO-Simple ALM Algorithm

� Time Loop

� Outer Loop

� Wind turbine forces
� Initial U equation
� Initial p equation
� Pressure Loop

? Non-ortho loop

) Update p

? Update U

� Turbulence model

� Wind turbine forces
are more coupled with
the velocity

� Outputs written out
each time function is
called

Write at last outer loop:
if (pimple.finalIter())

{
Write the output files

}

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 12



Contents

1 Introduction
Research Objectives
Algorithms

2 Actuator Line Method Implementation
PISO
PISO-Simple

3 PISO-Simple Stability and `Optimization'
Testing
Application

4 Conclusions

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 13



Goals

How to quickly/easily �gure out how many loops to use?

! Desire numerical stability for accurate simulation with
minimum CPU time

� Experiment on a simple test case

� Use a small test that is `representative' of our problem
� Run many tests to identify broad characteristics

� Run tests for our application

� See if characteristics found using test problem still apply
� Small number of cases for small periods of time

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 14



Moving Cone Tutorial

Test case similarities:

� Moving/deforming mesh

� Varied cell volumes and aspect ratios

� Small mesh ! runs quickly

Controlled Inputs:

� Number of outer loops = [1 2 4]

� Number of pressure loops = [1 2 4]

� Number of non-ortho loops = [1 3]

� Max Courant number = [.2 1 4 10]

Outputs Compared:

� Wall-clock time

� Integrated force

� Max pressure/velocity

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 15



Varying the Number of Outer Loops

Higher numbers of outer loops don't automatically provide
more stability.

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 16



Varying the Number of Pressure Loops

Stability requires the predictor-corrector pressure loop to
reach `local equilibrium.'

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 17



Lessons Learned from Test Case

� Adding outer loops won't necessarily help accuracy

� Predictor-corrector must converge, otherwise unstable
� Non-ortho loops as required for mesh, regardless of

pressure or outer loops

� Increasing the number of loops doesn't add time linearly

� Tolerances met with fewer iterations in later loops

� Courant numbers above 1 easily reached

� More outer loops required for longer time
� Relies on pressure loop convergence

� Can reduce loops after initial transient

� Initialization requires more loops than restart

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 18



Application to Empty Domain ABL Solver

ABL Inow

Initialization

ABL

Inow

Run

Outer 3 2

Pressure 3 2

Non-ortho 5 3

PISO-Simple vs. PISO

� 13x the time-step

� 58% of the
computational cost

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 19



Application to Actuator Line Solver

Uniform

Inow

ABL Inow

Initialization

ABL

Inow

Run

Outer 2 3 2

Pressure 2 4 3

Non-ortho 3 5 3

PISO-Simple vs.
PISO

� 10x the
time-step

� 70% of the
computational
cost

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 20



Application to Hybrid URANS-LES Simulations

Initialization Run

Outer 4 4

Pressure 4 2

Non-ortho 4 2

� Ganesh has also done
work varying the number
of pressure loop and
non-ortho loops for each
outer loop

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 21



Contents

1 Introduction
Research Objectives
Algorithms

2 Actuator Line Method Implementation
PISO
PISO-Simple

3 PISO-Simple Stability and `Optimization'
Testing
Application

4 Conclusions

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 22



Conclusions

� PISO-Simple is a combination of PISO and Simple

� Coupled relaxation towards next time-step of Simple
� Predictor-Corrector of PISO

� PISO-Simple allows for additional capabilities

� Mesh motion and deformation
� Larger time-steps with better stability

� Potential bene�ts are very application speci�c

� Required for some applications
� Adds unnecessary hassle to others

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 23



Acknowledgments

� Funding: PSU's ARL, NSF, DoE

� ALM: Pankaj Jha, Sven Schmitz, Matt Church�eld

� OpenFOAM: Brent Craven, Eric Paterson, Bryan Lewis

� Pre-/Post- Processing: Earl Duque, Warren Baker,
Pointwise, William Brouwer

� CPU: XSEDE (NSF), RCC (PSU)

Thank you for your time.

Contact info: adam.lavely@psu.edu

Adam Lavely (PSU) SOWE 2014: PISO-Simple for ABL Solvers 24

adam.lavely@psu.edu

	Introduction
	Research Objectives
	Algorithms

	Actuator Line Method Implementation
	PISO
	PISO-Simple

	PISO-Simple Stability and `Optimization'
	Testing
	Application

	Conclusions

